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1. Introduction 
Prompt fission γ-ray spectra (PFGS) 
•  Include valuable information 

Ø  Sharing the total excitation energy between two FFs 
Ø  Spin distributions, level densities, γ-ray strength functions, etc... 

•  Important for atomic energy applications. 

132Sn 
78Ni 
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PFGS measured for 252Cf(sf) 

H. van der Ploeg et al., 
Phys. Rev. C, 52, 1915 (1995). 

A. Hotzel et al., Z. Phys. A336 (1996) 299. 

GDR? 
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Mass Yield 

PDR? 

To understand origins of enhancements, 
one need data for fission of other 
isotopes with different mass yield. 
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PFGS measured for (nth,f) 

A. Oberstedt et al., PRC 87 (2013) 051602. 
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•  Measurements are limited up to about 6 MeV 
•  Fragment mass dependence was not obtained 

We proposed to measure the PFGS in 235U(n,f) up to ~ 20 MeV  



2. Measurement 
Developed a new setup consists of detectors for FFs and γ-rays 

 to measure the PFGS down to ~10−7 γ/fis./MeV @ 20 MeV 
Ø  105 times larger sensitivity compared with previous measurements 
Ø  Simple setup to measure the PFGS at any beam-line facility 
→ Large solid angle FF detector and large volume γ-ray detector 
Ø  Capability being withstood against high counting rates 
Ø  Ability being able to separate prompt γ-rays from neutrons 
→ Fast timing properties for both FF and γ-ray detectors 
Our decision was to use 
Ø  two position-sensitive multi-wire proportional counters (MWPCs) 
Ø  two large volume LaBr3(Ce) scintillators 
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Detectors for FFs and γ-rays 

MWPC for FFs 
Large area (80 × 80 mm2) 
Position sensitive 
No radiation damage 
Fast timing 
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LaBr3(Ce) scintillators for γ-rays 
Large Volume (4inφ ×5in) 
High-energy resolution 
Fast timing 
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Response functions of LaBr3(Ce) scintillator  

Need to obtain PFGS from measured spectrum 
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2. Measurement 
Observe γ-rays coincidence with FFs at the PF1b cold-neutron facility 

at Insitute Laue-Langevin (ILL), Grenoble, France 
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LaBr3(Ce 	
scin.llator	
(4inφ×5in)		

Neutron beam 

γ-ray 

235U target 

250 mm 50 FF 

Chamber 

MWPC  
(80mm×80 mm)  

Shielding 
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Neutron beam 

235U target 
MWPC 

LaBr3(Ce) 



Measurement condition and statistics 

•  Neutron flux : ~108	n	/	cm2	/	s,	φ20mm	
•  Target : 235UF4	(>	99.9	%,	φ30mm,	117	µg/cm2,	0.85	mg) 

Ø  From EU-JRC (IRMM), Belgium 
•  Measurement time : 436.7 h 
•  Counting Rates for each detector 

Ø  MWPC (FFs) : ~56 kHz 
Ø  LaBr3(Ce) scintillator (γ-rays) : ~30 kHz (Threshold: 0.8 MeV) 

•  High throughput digital waveform processing system 
   Output energy, timing, and pile-up events 

Ø  Dead time : 1 ~ 2 % for each MWPC and LaBr3(Ce) scintillator 
Ø  Fraction of pile-up events : ~ 0.03 % of total events 

•  Registered events 
Ø  Two FFs in coincidence : 5.1 × 1010 

Ø  γ-rays in coincidence with FFs : 1.7 × 109 
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3. Results and Analysis 

Total γ-ray events observed by one LaBr3(Ce) scintillator 

12 Almost all events are background due to scattered neutrons 
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3. Results and Analysis 

Selection of the γ-ray events 

13 Non-negligible amounts of time-independent background are seen 
ADC Channel
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3. Results and Analysis 

Selection of the γ-ray events 

14 Estimated time-independent background component 
ADC Channel
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PFGS for 235U(nth, f) 

Unfolded net spectrum with response of LaBr3(Ce) scintillators 
Energy calibration:27Al(n,γ) 28Al, 28Al(β−), and 11B(p,γ)12C 
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PFGS for 235U(nth, f) 

Unfolded net spectrum with response of LaBr3(Ce) scintillators 
Energy calibration:27Al(n,γ) 28Al, 28Al(β−), and 11B(p,γ)12C 
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PFGS for 235U(nth, f) 

Unfolded net spectrum with response of LaBr3(Ce) scintillators 
Energy calibration:27Al(n,γ) 28Al, 28Al(β−), and 11B(p,γ)12C 
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Fission Fragment Mass Distribution for 235U(nth, f) 

Derived from time difference between two FFs (flight pass : 50 mm) 
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4. Discussions 
Compare the present PFGS with a theoretical model 
Hauser-Feshbach model [K. Kawano et al., Nucl. Phys., A 913 (2013) 51.] 
•   Experimental TKE and Mass distribution → TXE distribution 
•   Initial spin (J ) distribution 
(assumed same as the level density spin distribution) 
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𝑅(𝐽,𝜋)= 𝐽+1/2/2𝜎↑2  exp{− ( 𝐽+1/2)↑2 /2(𝑓𝜎)↑2  } 

•   Competition between prompt neutrons and γ-rays 
•   Discrete level data : taken from RIPL-3 
•   Fully deterministic calculation (instead of MC technique) 

Ø  σ : spin cut-off parameter 
Ø  f : scaling factor to reproduce some observable quantities 



Comparison with theoretical model 

PFGS for 235U(nth,f) [Total] 
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A fairly good agreement was obtained at E < 12 MeV.  
A few isotopes contribute to the enhancement at E > 10 MeV. 
(86Br, 109Tc … etc) 

Contributions from each isotope 
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Comparison with theoretical model 

Initial spin distributions of FFs depend on spin cut-off parameter σ
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Large σ causes the increases of 
•  Average J in initial spin distribution, and 
•  Probability of finding a high spin state 
      in low-lying levels of decaying FFs, 
But hinders neutron emission to the 
      residual nucleus with small σ. 
→ High energy γ-rays might be emitted 
      from the isotopes with large σ value 
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Comparison with theoretical model 

σ (spin cut-off parameter)  dependence of the PFGS

23 

As σ increases, fraction of the high energy γ-rays increases, and 
Many isotopes contribute to the enhancement at E > 10 MeV. 
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Comparison with theoretical model 

PFGS for 235U(nth,f) [Fragment-Mass Gated] 
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Reproduce	the	difference	between	spectra	obtained	by	the	gates	at	
[81 ≤ M ≤ 96]+[140 ≤ M ≤ 155] and [97 ≤ M ≤ 116]+[120 ≤ M ≤ 139] 

4MeV 

6MeV 



Comparison with theoretical model 

Contributions from selected isotopes 

25 Isotopes around N=82 contribute to 4 and 6 MeV hump structures 

4MeV 

6MeV 

Contributions from the discrete levels 



Comparison with 252Cf(sf) 

[ 97 ≤ M ≤ 116]+[120 ≤ M ≤ 139] 
235U(n,f) [Baba et al., JNST34 (1997).] 
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5. Summary 
•  High efficiency set up for measurement of PFGS was developed. 
•  PFGS for 235U(nth,f) were measured up to 20 MeV. 
•  PFGS do not decrease linearly with energy on logarithmic scale, 

 but reveal a broad hump at E > 10 MeV. 
•  Hump structures were also observed around 4 MeV and 6 MeV. 
•  Calculation using Hauser-Feshbach model was compared to the 

present PFGS 
Ø  Hump at E > 10 MeV originates from a few isotopes  

 with the large spin cut-off parameter (86Br, 109Tc, and …). 
Ø  Fraction of high-E γ-rays (E > 10 MeV) strongly depends on 

  the spin cut-off parameter (initial spin distribution of FFs) 
Ø  Isotopes in the vicinity of 132Sn contribute humps  

 around 4 and 6 MeV. 
27 
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Measurement  - setup 

LaBr3(Ce  
scintillator  

Neutron beam 

γ-ray 

235U target 

250 mm 50 FF 

Chamber 
MWPC  
(80mm×80 mm)  

Shielding 

Fission Chamber 

- HV 

GND wire	
Signal	

Cathode	

FF	MWPC 

DAQ system 

LaBr3(Ce) scintillators 



Neutron beam 

Al Window 0.5mm  

MWPC1 

γ-ray detector 

MWPC2 
Target Holder 

235U target 



Determination of g-ray spectrum for 11B(p,γ)12C 

•  Stripping	method	
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•  Unfolding	Method	
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Coincidence between FFs and γ-rays 

Correla.on	between	TOF	of	γ-ray	events	and	pulse	height	of	LaBr3(Ce) 
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